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Abstract When multiple followers are involved in a bilevel decision problem, the
leader’s decision will be affected, not only by the reactions of these followers, but
also by the relationships among these followers. One of the popular situations within
this bilevel multi-follower issue is where these followers are uncooperatively mak-
ing their decisions while having cross reference to decision information of the other
followers. This situation is called a referential-uncooperative situation in this paper.
The well-known Kuhn–Tucker approach has been previously successfully applied to a
one-leader-and-one-follower linear bilevel decision problem. This paper extends this
approach to deal with the above-mentioned linear referential-uncooperative bilevel
multi-follower decision problem. The paper first presents a decision model for this
problem. It then proposes an extended Kuhn–Tucker approach to solve this problem.
Finally, a numerical example illustrates the application of the extended Kuhn–Tucker
approach.
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1 Introduction

In a bilevel programming (BLP) problem, the leader cannot completely control his/her
follower but is influenced by the reaction of his/her follower. Such a situation occurs in
decision making of many decentralized organizations. The BLP was motivated by the
game theory of Stackelberg [1] in the context of unbalanced economic markets [2].
There have been nearly two dozen algorithms, such as, the Kth best approach [3,4],
Kuhn–Tucker approach [5–7], complementarity pivot approach [8], penalty function
approach [9–13], proposed for solving linear BLP problems since the field caught the
attention of researchers in the mid-1970s. The Kuhn–Tucker approach has proved to
be a valuable analysis tool with a wide range of successful applications in this field
[2,6,7,14–16].

Although much research has been carried out, existing bilevel technology has
mainly been limited to a specific situation comparing one leader and one follower.
However, in a real-world bilevel decision problem, the lower level of a bilevel deci-
sion may involve multiple decision units. For example, the dean of a faculty is the
leader, and all the heads of departments in the faculty are the followers in making
a faculty annual budget. The leader’s (the dean’s, e.g.) decision will be affected,
not only by the reactions of the multiple followers (these heads of departments
in the faculty), but also by the relationships among these followers. Each of the
leader’s possible decisions is influenced by the various reactions of his/her follow-
ers who may have had a share in decision information, objectives, and constraints.
Hence, a bilevel multi-follower (BLMF) decision problem occurs commonly in any
organizational decision practice, and involves various different decision situations.
Different relationships among these followers will lead to different bilevel decision
situations.

Our previous work [17–19] extended existing linear BLP theory and approaches
in one-leader-and-one-follower situation. Following that, we have recently gener-
alized a framework for BLMF decision problems, and identified nine main kinds
of relationships amongst these followers [20]. The uncooperative model describes
the most popular situation of the nine for BLMF decision problems. This model
handles the relationship in which there is no shared decision variable among the
followers. Under this uncooperative model, the most basic situation is that any
follower also doesn’t make any reference to any of the other followers’ decisions.
A model and related approaches in finding an optimal solution for this particu-
lar decision situation have been developed, the reader is referred to [20,21]. An
alternative uncooperative situation occurs when despite the fact that the follow-
ers are uncooperative in that there is no sharing of decision variables, they do
however cross reference information by considering other followers’ decision results
in each of their own decision objectives and constraints. We call this case as a
referential-uncooperative situation, and this paper will particularly focus on this
situation.

Following the introduction, this paper proposes a model for linear BLMF
decision making in a referential-uncooperative situation in Sect. 2. An extended
Kuhn–Tucker approach for solving this model is presented in Sect. 3. A numeric
example for this approach is illustrated in Sect. 4. Concluding remarks are given in
Sect. 5.
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2 The linear BLMF decision model in a referential-uncooperative situation

Under the BLMF framework, if two followers do not have any shared decision
variable, it is called an uncooperative relationship. But if one of them has a reference
to another follower’s decision information in his/her objective or constraint, the two
followers are defined as having a referential-uncooperative relationship. When there
is a referential-uncooperative relationship in a BLMF decision model, this model is
called a referential-uncooperative BLMF decision model. We present this model as
follows.

For x ∈ X ⊂ Rn, yi ∈ Yi ⊂ Rmi , F : X × Y1 × · · · × YK → R1, and fi :
X × Y1 × · · · × YK → R1, i = 1, 2, . . . , K, a linear BLMF decision problem where
K(� 2) followers are involved and there are no shared decision variables, but shared
information in objective functions and constraint functions among the followers which
is defined as follows:

min
x∈X

F(x, y1, . . . , yK) = cx +
K∑

s=1

dsys, (1a)

subject to Ax +
K∑

s=1

Bsys � b, (1b)

min
yi∈Yi

fi(x, y1, . . . , yK) = cix +
K∑

s=1

eisys, (1c)

subject to Aix +
K∑

s=1

Cisys � bi, (1d)

where c ∈ Rn, ci ∈ Rn, di ∈ Rmi , eis ∈ Rms , b ∈ Rp, bi ∈ Rqi , A ∈ Rp×n, Bi ∈ Rp×mi ,
Ai ∈ Rqi×n, Cis ∈ Rqi×ms , i, s = 1, 2, . . . , K.

To find an optimal solution for this model we introduce definitions of constraint
region, projection of S onto the leader’s decision space, feasible set for each follower,
and inducible region for a linear BLMF decision problem.

Definition 1

(a) Constraint region of a linear BLMF decision problem:

S =
{

(x, y1, . . . , yK) ∈ X × Y1 × · · · × Yk, Ax +
K∑

s=1

Bsys � b,

Aix +
K∑

s=1

Cisys � bi, i = 1, 2, . . . , K

}
.

The constraint region refers to all possible combinations of choices that the
leader and followers may make.

(b) Projection of S onto the leader’s decision space:

S(X)=
{

x ∈ X : ∃yi ∈ Yi, Ax +
K∑

s=1

Bsys � b, Aix +
K∑

s=1

Cisys � bi, i = 1, 2, . . . , K

}
.
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(c) Feasible set for each follower ∀x ∈ S(X):

Si(x) = {yi ∈ Yi : (x, y1, . . . , yK) ∈ S}.
The feasible region for each follower is affected by the leader’s choice of x, and
the allowable choices of each follower are the elements of S.

(d) Each follower’s rational reaction set for x ∈ S(X):
Pi(x) = {yi ∈ Yi : yi ∈ arg min[fi(x, ŷi, yj, j = 1, 2, . . . , K, j �= i) : ŷi ∈ Si(x)]},
where i = 1, 2, . . . , K, arg min[fi(x, ŷi, yj, j = 1, 2, . . . , K, j �= i) : ŷi ∈ Si(x)]
= {yi ∈ Si(x) : fi(x, y1, . . . , yK) � fi(x, ŷi, yj, j = 1, 2, . . . , K, j �= i), ŷi ∈ Si(x)}.
The followers observe the leader’s action and simultaneously react by selecting
yi from their feasible set to minimize their objective function.

(e) Inducible region:

IR = {(x, y1, . . . , yK) : (x, y1, . . . , yK) ∈ S, yi ∈ Pi(x), i = 1, 2, . . . , K}.
Thus the model given by expressions (1a)–(1d) can be rewritten in terms of the

above notations as follows

min{F(x, y1, . . . , yK) : (x, y1, . . . , yK) ∈ IR}. (2)

We propose the following theorem to characterize the condition under which there
exists an optimal solution for a referential-uncooperative linear BLMF decision prob-
lem shown in (1a)–(1d).

Theorem 1 If S is nonempty and compact, there exists an optimal solution for a
linear BLMF decision problem.

Proof Since S is nonempty, there exist a point (x∗, y∗
1, . . . , y∗

K) ∈ S. Then, we have

x∗ ∈ S(X) �= φ

by Definition 1(b). Consequently, we have

Si(x∗) �= φ, i = 1, 2, . . . , K

by Definition 1(c). Because S is compact and Definition 1(d), we have

Pi(x∗) = {yi ∈ Yi : yi ∈ arg min[fi(x∗, ŷi, yj, j = 1, 2, . . . , K, j �= i) : ŷi ∈ Si(x∗)]}
= {yi ∈ Yi : yi ∈ {yi ∈ Si(x∗) :

fi(x∗, y1, . . . , yK) � fi(x∗, ŷi, yj, j = 1, 2, . . . , K, j �= i), ŷi ∈ Si(x∗)}} �= φ,

where i = 1, 2, . . . , K. Hence, there exists y0
i ∈ Pi(x∗), i = 1, 2, . . . , K such that

(x∗, y0
1, . . . , y0

K) ∈ S. Therefore, we have

IR = {(x, y1, . . . , yK) : (x, y1, . . . , yK) ∈ S, yi ∈ Pi(x), i = 1, 2, . . . , K} �= φ

by Definition 1(e). Because we are minimizing a linear function
minx∈X F(x, y1, . . . , yK) = cx+∑K

s=1 dsys over IR, which is nonempty and bounded,
an optimal solution to the linear BLMF decision problem must exist. The proof is
completed. �



J Glob Optim (2007) 38:597–608 601

3 An extended Kuhn–Tucker approach for referential-uncooperative BLMF
decision problem

In this section, we extend the well known Kuhn–Tucker conditions so as to provide
necessary and sufficient conditions for the linear referential-uncooperative BLMF
decision problem defined by expression (1a–1d).

Let write a linear programming (LP) as follows.

min f (x) = cx,

subject to Ax � b,

x � 0,

where c is an n-dimensional row vector, b an m-dimensional column vector, A an
m × n matrix with m � n, and x ∈ Rn.

Let λ ∈ Rm and µ ∈ Rn be the dual variables associated with constraints Ax � b
and x � 0, respectively. Then we note that Bard [2] gave the following proposition.

Proposition 1 A necessary and sufficient condition that (x∗) solves above LP is that
there exist (row) vectors λ∗, µ∗ such that (x∗, λ∗, µ∗) solves:

λA − µ = −c,

Ax − b � 0,

λ(Ax − b) = 0,

µx = 0,

x � 0, λ � 0, µ � 0.

The proof for this proposition is given in [2, pp. 59–60]. We will next utilize this
to derive the extended Kuhn–Tucker approach for referential-uncooperative BLMF
decision problem.

Let ui ∈ Rp, vi ∈ Rq1+q2+···+qK and wi ∈ Rmi(i = 1, 2, . . . , K) be the dual vari-
ables associated with constraints (Ax + ∑K

s=1 Bsys � b), (A′x + ∑K
s=1 C′

sys � b′),
and yi � 0 (i = 1, . . . , K), respectively, where A′ = (A1, A2, . . . , AK)T , C′

i =
(Ci1, Ci2, . . . , CiK)T , and b′ = (b1, b2, . . . , bK)T .

We have the following theorem, which gives the necessary and sufficient conditions
for solving a referential-uncooperative BLMF decision problem.

Theorem 2 A necessary and sufficient condition that (x∗, y∗
1, . . . , y∗

K) solves the
linear BLMF decision problem (1a)–(1d) is that there exist (row) vectors u∗

1, u∗
2, . . . , u∗

K,
v∗

1, v∗
2, . . . , v∗

K, and w∗
1, w∗

2, . . . , w∗
K such that (x∗, y∗

1, . . . , y∗
K, u∗

1, . . . , u∗
K, v∗

1, . . . , v∗
K,

w∗
1, . . . , w∗

K) solves:

min
x∈X

F(x, y1, . . . , yK) = cx +
K∑

s=1

dsys, (3a)

subject to Ax +
K∑

s=1

Bsys � b, (3b)

A′x +
K∑

s=1

C′
sys � b′, (3c)
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uiBi + viC′
i − wi = −eii (3d)

ui

(
b − Ax −

K∑

s=1

Bsys

)
+ vi

(
b′ − A′x −

K∑

s=1

C′
sys

)
+ wiyi = 0, (3e)

x � 0, yj � 0, uj � 0, vj � 0, wj � 0, j = 1, 2, . . . , K, (3f)

where i = 1, 2 . . . , K.

Proof

(1) Let us get an explicit expression of (2).

Rewrite (2) as follows:

min F(x, y1, . . . , yK),

subject to (x, y1, . . . , yK) ∈ IR.

We have

min F(x, y1, . . . , yK),

subject to (x, y1, . . . , yK) ∈ S,

yi = Pi(x),

where i = 1, 2, . . . , K, by Definition 1(e). Then, we have

min F(x, y1, . . . , yK),

subject to (x, y1, . . . , yK) ∈ S,

yi ∈ arg min[fi(x, ŷi, yj, j = 1, 2, . . . , K, j �= i) : ŷi ∈ Si(x)],
where i = 1, 2, . . . , K, by Definition 1(d). We rewrite it as:

min F(x, y1, . . . , yK),

subject to (x, y1, . . . , yK) ∈ S,

min fi(x, y1, . . . , yK),

subject to yi ∈ Si(x),

where i = 1, 2, . . . , K. We have

min F(x, y1, . . . , yK),

subject to (x, y1, . . . , yK) ∈ S,

min
yi∈Yi

fi(x, y1, . . . , yK),

subject to (x, y1, . . . , yK) ∈ S,

where i = 1, 2, . . . , K, by Definition 1(c). Consequently, we can have

min
x∈X

F(x, y1, . . . , yK) = cx +
K∑

s=1

dsys, (4a)
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subject to Ax +
K∑

s=1

Bsys � b, (4b)

Ajx +
K∑

s=1

Cisys � bi, j = 1, 2, . . . , K, (4c)

min
yi∈Yi

fi(x, yi, . . . , yK) = cix +
K∑

s=1

eisys, (4d)

subject to Ax +
K∑

s=1

Bsys � b, (4e)

Ajx +
K∑

s=1

Cisys � bi, j = 1, 2, . . . , K, (4f)

where i = 1, 2, . . . , K, by Definition 1(a).
This simple transformation has shown that solving the linear BLMF decision prob-

lem (1a)–(1d) is equivalent to solving (4a)–(4f).
(2) Hence the proof of necessity is shown by (4a)–(4f).
(3) Sufficiency is proved as follows:
If (x∗, y∗

1, . . . , y∗
K) is the optimal solution of (1a)–(1d), we need to show that there exist

(row) vectors u∗
1, u∗

2, . . . , u∗
K, v∗

1, v∗
2, . . . , v∗

K, and w∗
1, w∗

2, . . . , w∗
K such that(x∗, y∗

1, . . . , y∗
K,

u∗
1, . . . , u∗

K, v∗
1, . . . , v∗

K, w∗
1, . . . , w∗

K) to solve (4a)–(4f). Going one step farther, we only
need to prove that there exist (row) vectors u∗

1, u∗
2, . . . , u∗

K, v∗
1, v∗

2, . . . , v∗
K, and w∗

1,
w∗

2, . . . , w∗
K such that (x∗, y∗

1, . . . , y∗
K, u∗

1, . . . , u∗
K, v∗

1, . . . , v∗
K, w∗

1, . . . , w∗
K) satisfies the

following expressions (5a)–(5d) below:

uiBi + viC′
i − wi = −eii, (5a)

ui

(
b − Ax −

K∑
s=1

Bsys

)
= 0, (5b)

vi

(
b′ − A′x −

K∑
s=1

C′
sys

)
= 0, (5c)

wiyi = 0, (5d)

where ui ∈ Rp, vi ∈ Rq1+q2+···+qK , wi ∈ Rmi , i = 1, 2, . . . , K and they are not negative
variables. Because (x∗, y∗

1, . . . , y∗
K) is the optimal solution of (1a)–(1d), we have

(x∗, y∗
1, . . . , y∗

K) ∈ IR,

by (2). Thus we have

y∗
i ∈ Pi(x∗),

where i = 1, 2, . . . , K, by Definition 1(e). Consequently (y∗
1, y∗

2, . . . , y∗
K) is the optimal

solution to the following problem

min(fi(x∗, y1, . . . , yK) : yi ∈ Si(x∗)),
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where i = 1, 2, . . . , K, by Definition 1(d). Rewrite it as follows

min fi(x, y1, . . . , yK),

subject to yi ∈ Si(x),

x = x∗,

yj = y∗
j , j = 1, 2, . . . , K, j �= i,

where i = 1, 2, . . . , K. From Definition 1(c), we have

min fi(x, y1, . . . , yK) = cix +
K∑

s=1

eisys, (6a)

subject to Ax +
K∑

s=1

Bsys � b, (6b)

Ajx +
k∑

s=1

Cjsys ≤ bj, j = 1, 2, . . . , K, (6c)

x = x∗, (6d)

yi � 0, (6e)

yj = y∗
j , j = 1, 2, . . . , K, j �= i, (6f)

where i = 1, 2, . . . , K. Let us define:
A′ = (A1, A2, . . . , AK)−1, b′ = (b1, b2, . . . , bK)−1, C′

i = (Ci1, Ci2, . . . , CiK)−1,
i = 1, 2 . . . , K. To simplify (6c), we can have

min fi(x, y1, . . . , yK) = cix +
K∑

s=1

eisys,

subject to Ax +
K∑

s=1

Bsys � b,

A′x +
K∑

s=1

C′
sys � b′,

x = x∗,

yi � 0,

yj = y∗
j , j = 1, 2, . . . , K, j �= i,

where i = 1, 2, . . . , K.
Thus simplify it, we can have

min fi(yi) = eiiyi, (7a)

subject to −
(

Bi
C′

i

)
yi � −

⎛

⎜⎜⎜⎝

b − Ax∗ −
K∑

s=1,s �=i
Bsy∗

s

b′
i − A′x∗ −

K∑
s=1,s �=i

C′
sy

∗
s

⎞

⎟⎟⎟⎠ , (7b)

yi � 0, (7c)

where i = 1, 2, . . . , K.
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Now we see that y∗
i is the optimal solution of (7a)–(7c) which is a LP problem. By

Proposition 1, there exists vectors λ∗
i , µ∗

i , i = 1, 2, . . . , K that satisfy the system below

λi

(
Bi
C′

i

)
− µi = −eii,

λi

⎛

⎜⎜⎜⎝−
(

Bi
C′

i

)
yi +

⎛

⎜⎜⎜⎝

b − Ax∗ −
K∑

s=1,s �=i
Bsy∗

s

b′ − A′x∗ −
K∑

s=1,s �=i
C′

sy
∗
s

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠ = 0,

µiyi = 0,

where λi ∈ Rp+q1+...+qK , µi ∈ Rmi , i = 1, 2, · · · , K.
Let ui ∈ Rp, vi ∈ Rqi+q2+···+qK , wi ∈ Rmi and define

λi = (ui, vi) ,

wi = µi,

where i = 1, 2, . . . , K. Thus we have (x∗, y∗
1, . . . , y∗

K, u∗
1, . . . , u∗

K, v∗
1, . . . , v∗

K, w∗
1, . . . , w∗

K)

that satisfy (8a)–(8n). Our proof is completed. �

Theorem 2 means that the most direct approach to solving (1a)–(1d) is to solve the
equivalent mathematical program given in (7a)–(7c). One advantage this offers is that
it allows a more robust model to be solved without introducing any new computational
difficulty.

4 Numerical example for the extended Kuhn–Tucker approach

We apply the above Necessity and Sufficiency conditions given in Theorem 2 to a
simple linear referential-uncooperative BLMF decision problem to illustrate how the
extended Kuhn–Tucker approach is used.

Example Consider the following linear BLMF decision problem with x1, x2 ∈ R1,
y1, y2 ∈ R1, y3 ∈ R1and X = {x1 � 0, x2 � 0}, Y = {y1 � 0, y2 � 0, y3 � 0},

min
x1∈X,x2∈X

F(x1, x2, y1, y2, y3) = −8x1 − 4x2 − 4y1 + 40y2 + 4y3,

subject to 2x1 − y1 + 2y2 − 0.5y3 � 1,

min
y1∈Y

f1(x1, x2, y1, y2, y3) = 2x1 + x2 + 2y1 − y2 − y3,

min
y2∈Y

f2(x1, x2, y1, y2, y3) = x1 + 2x2 − y1 + 2y2 − y3,

min
y3∈Y3

f3(x1, x2, y1, y2, y3) = 3x1 + 3x2 + y1 + y2 − 2y3,

subject to 2x2 + 2y1 − y2 − 0.5y3 � 1,

−y1 + y2 + y3 � 1.

This is a referential-uncooperative problem. Each of the three followers has an individ-
ual objective and decision variable, but considering other followers’ decision variables
in his/her objective works.



606 J Glob Optim (2007) 38:597–608

We illustrate the application of the extended Kuhn–Tucker approach to this example.
According to the proposed extended Kuhn–Tucker approach, we write all the inequal-
ities excepting x1 � 0, x2 � 0 of the transferred form of the example as follows:

gu,1(x1, x2, y1, y2, y3) = 1 − (2x1 − y1 + 2y2 − 0.5y3) � 0,

gv,1(x1, x2, y1, y2, y3) = 1 − (2x2 + 2y1 − y2 − 0.5y3) � 0,

gv,2(x1, x2, y1, y2, y3) = 1 − (−y1 + y2 + y3) � 0,

gw1,1(x1, x2, y1, y2, y3) = y1 � 0,

gw2,1(x1, x2, y1, y2, y3) = y2 � 0,

gw3,1(x1, x2, y1, y2, y3) = y3 � 0.

From (3a) to (3f), we have

min(−8x1 − 4x2 − 4y1 + 40y2 + 4y3), (8a)

subject to 2x1 − y1 + 2y2 − 0.5y3 � 1, (8b)

2x2 + 2y1 − y2 − 0.5y3 � 1, (8c)

− y1 + y2 + y3 � 1, (8d)

− u11 + 2v11 − v12 − w11 = −2, (8e)

2u21 − v21 + v22 − w21 = −2, (8f)

− 0.5u31 − 0.5v31 + v32 − w31 = 2, (8g)

gu,1u11 + gv,1v11 + gv,2v12 + gw1,1w11 = 0, (8h)

gu,1u21 + gv,1v21 + gv,2v22 + gw2,1w21 = 0, (8i)

gu,1u31 + gv,1v31 + gv,2v32 + gw3,1w31 = 0, (8j)

x1 � 0, x2 � 0, y1 � 0, y2 � 0, y3 � 0, (8k)

u11 � 0, v11 � 0, v12 � 0, w11 � 0, (8l)

u21 � 0, v21 � 0, v22 � 0, w21 � 0, (8m)

u31 � 0, v31 � 0, v32 � 0, w31 � 0. (8n)

From (8e), (8f), (8g), (8l), (8m) and (8n), we have following six possibilities.

Case1 (u11, v11, v12, w11, u21, v21, v22, w21, u31, v31, v32, w31) = (2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0).

Case2 (u11, v11, v12, w11, u21, v21, v22, w21, u31, v31, v32, w31) = (0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0).

Case3 (u11, v11, v12, w11, u21, v21, v22, w21, u31, v31, v32, w31) = (0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0).

Case4 (u11, v11, v12, w11, u21, v21, v22, w21, u31, v31, v32, w31) = (2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0).

Case5 (u11, v11, v12, w11, u21, v21, v22, w21, u31, v31, v32, w31) = (0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0).

Case6 (u11, v11, v12, w11, u21, v21, v22, w21, u31, v31, v32, w31) = (0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0).
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Table 1 Procedure of solution

Case Solution occurs at the point F f1 f2 f3

2 (x2
1, x2

2, y2
1, y2

2, y2
3) = (1.5, 0, 1, 0, 2) F2 = −8 f 2

1 = 3 f 2
2 = −1.5 f 2

3 = 1.5

3 (x3
1, x3

2, y3
1, y3

2, y3
3) = (0.75, 0.75, 0, 0, 1) F3 = −5 f 3

1 = 1.25 f 3
2 = 1.25 f 3

3 = 2.5

4 (x4
1, x4

2, y4
1, y4

2, y4
3) = (1.5, 0, 1, 0, 2) F4 = −8 f 4

1 = 3 f 4
2 = −1.5 f 4

3 = 1.5

5 (x5
1, x5

2, y5
1, y5

2, y5
3) = (1.5, 0, 1, 0, 2) F5 = −8 f 5

1 = 3 f 5
2 = −1.5 f 5

3 = 1.5

6 (x6
1, x6

2, y6
1, y6

2, y6
3) = (0.75, 0.75, 0, 0, 0) F6 = −5 f 6

1 = 1.25 f 6
2 = 1.25 f 6

3 = 2.5

From Case 1, (8h), (8i), (8j) and (8k), we have

gu,1(x1, x2, y1, y2, y3) = 1 − (2x1 − y1 + 2y2 − 0.5y3) = 0,

gv,1(x1, x2, y1, y2, y3) = 1 − (2x2 + 2y1 − y2 − 0.5y3) = 0,

gv,2(x1, x2, y1, y2, y3) = 1 − (−y1 + y2 + y3) = 0.

Consequently, (8a)–(8n) can be rewritten as follows:

min(−8x1 − 4x2 − 4y1 + 40y2 + 4y3),

subject to 2x1 − y1 + 2y2 − 0.5y3 = 1,

2x2 + 2y1 − y2 − 0.5y3 = 1,

−y1 + y2 + y3 = 1,

x1 � 0, x2 � 0, y1 � 0, y2 � 0, z � 0.

Using the simplex algorithm [2], we found that a solution occurs at the point
(x1

1, x1
2, y1

1, y1
2, y1

3) = (1.5, 0, 1, 0, 2) with F1 = −8, f 1
1 = 3, f 1

2 = −1.5, and f 1
3 = 1.5.

By using the same approach as that of Case 1, we obtain a solution for each case
as shown in Table 1.

By examining above procedure shown in Table 1, we found that the optimal solu-
tion for this example which occurs at the point (x∗

1, x∗
1, y∗

1, y∗
2, y∗

3) = (1.5, 0, 1, 0, 2) with
F∗ = −8, f ∗

1 = 3,f ∗
2 = −1.5, f ∗

3 = 1.5.

5 Concluding remark

Different relationships occur among multiple followers in a BLMF decision problem
and these can cause multiple different processes for deriving an optimal solution for
the upper level’s decision making. The referential-uncooperative situation is one of
the frequenting occurring cases in BLMF decision practices. For solving such a BLMF
decision problem, this paper extended the Kuhn–Tucker approach from dealing with
one-leader-and-one-follower to dealing with referential-uncooperative multiple fol-
lowers. This paper further illustrated the details of the proposed approach by a numer-
ical example. Initial experimental results showed this new extended approach as
effective for solving the proposed BLMF decision problem.

Like most really powerful ideas, the basic notion of Nash equilibrium is very sim-
ple, even obvious. Its mathematical extensions and implications are not, however.
The idea of this natural “sticking point” is that no single player can benefit from
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unilaterally changing his or her move—a noncooperative best-response equilibrium
[22]. In a future research, we will explore how this concept can be applied in our
BLMF problem research. Some practical use of this extended approach to show real
world problems will also be considered as our future research task for BLMF decision
making in the referential-uncooperative situation.
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